criterion performance measurements

overview

want to understand this report?

sort . nub/100(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.189051739196837e-5 5.213009633842205e-5 5.2260715586492254e-5
Standard deviation 3.1335689348233645e-7 4.2016444360299073e-7 5.345166555679025e-7

Outlying measurements have no (8.848852040816587e-3%) effect on estimated standard deviation.

sort . nub/200(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.919642804108845e-4 1.9220668842413532e-4 1.9253028755024512e-4
Standard deviation 6.924737804310115e-7 8.733471333038741e-7 1.1281072764380537e-6

Outlying measurements have slight (1.1626297577854607e-2%) effect on estimated standard deviation.

sort . nub/400(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.217720806315301e-4 7.224701603192232e-4 7.233848393056666e-4
Standard deviation 1.7886620352966222e-6 2.3076747894340128e-6 2.824525598556395e-6

Outlying measurements have slight (1.6661878770468177e-2%) effect on estimated standard deviation.

sort . nub/600(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.564397167561532e-3 1.5663364594617547e-3 1.5689013433929015e-3
Standard deviation 6.002431294824394e-6 8.131329212748678e-6 1.0683114843636815e-5

Outlying measurements have slight (2.1728395061728394e-2%) effect on estimated standard deviation.

sort . nub/800(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.6156623869798704e-3 2.618303788960707e-3 2.6212629458387646e-3
Standard deviation 5.78358970128607e-6 7.701718537505484e-6 9.667011906827076e-6

Outlying measurements have slight (2.6296566837107235e-2%) effect on estimated standard deviation.

sort . nub/1000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.962213567882971e-3 3.966456913977613e-3 3.973365451782813e-3
Standard deviation 1.2670536135211392e-5 1.4827319572280745e-5 1.836527542978984e-5

Outlying measurements have slight (3.222222222222222e-2%) effect on estimated standard deviation.

sort . nub/1250(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.0234306351573935e-3 6.030594330810306e-3 6.0518494412292335e-3
Standard deviation 1.5998177385833088e-5 3.005813584084085e-5 5.0533248947659435e-5

Outlying measurements have slight (3.839999999999986e-2%) effect on estimated standard deviation.

sort . nub/1500(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.527777864394591e-3 8.549353333302916e-3 8.578752900253415e-3
Standard deviation 3.7202138591553815e-5 5.923197474603375e-5 8.515884583376159e-5

Outlying measurements have slight (4.5351473922902494e-2%) effect on estimated standard deviation.

sort . nub/2000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.4346239780284528e-2 1.4363435389400802e-2 1.4400387414714078e-2
Standard deviation 3.082559402024139e-5 5.443561683689289e-5 8.542640162422553e-5

Outlying measurements have slight (5.859375e-2%) effect on estimated standard deviation.

sort . nub/3000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 3.0551387973334027e-2 3.059314023887596e-2 3.0652697084415953e-2
Standard deviation 3.458453120783851e-5 9.02372243517934e-5 1.4054705313870563e-4

Outlying measurements have slight (9.000000000000001e-2%) effect on estimated standard deviation.

sort . nub/4000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.02617229112984e-2 5.044203476919684e-2 5.085220837501936e-2
Standard deviation 2.0052347811525353e-4 3.8402962962817846e-4 5.472983090623422e-4

Outlying measurements have moderate (0.109375%) effect on estimated standard deviation.

sort . nub/5000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.538290112219986e-2 7.615232524721845e-2 7.811174965279595e-2
Standard deviation 3.226918876376404e-4 1.6771504793275604e-3 2.3401266738680565e-3

Outlying measurements have moderate (0.13888888888888884%) effect on estimated standard deviation.

nub . sort/100(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 5.612158382602718e-5 5.6250744677467936e-5 5.659077379037449e-5
Standard deviation 2.8958736814037615e-7 5.16495454025757e-7 9.59808959266229e-7

Outlying measurements have no (9.00826446280991e-3%) effect on estimated standard deviation.

nub . sort/200(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.025923148447266e-4 2.034189563678715e-4 2.0444798655587656e-4
Standard deviation 1.6629697099495956e-6 2.4030411908146757e-6 3.318255482541725e-6

Outlying measurements have slight (1.1763038548752863e-2%) effect on estimated standard deviation.

nub . sort/400(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 7.766258226246357e-4 7.774224557961502e-4 7.781893396738849e-4
Standard deviation 1.6434499011464476e-6 2.019840722511961e-6 2.5061913422512693e-6

Outlying measurements have slight (1.694411414982164e-2%) effect on estimated standard deviation.

nub . sort/600(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.6985949176842223e-3 1.7024868050875756e-3 1.711488708208363e-3
Standard deviation 7.268897628742281e-6 1.2349406237863693e-5 1.8085338883158206e-5

Outlying measurements have slight (2.221074380165284e-2%) effect on estimated standard deviation.

nub . sort/800(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.890175929876266e-3 2.896875746841001e-3 2.9041526449512306e-3
Standard deviation 1.3246683157753286e-5 1.9496754699373722e-5 2.551446636136738e-5

Outlying measurements have slight (2.7755102040816326e-2%) effect on estimated standard deviation.

nub . sort/1000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.290233686381259e-3 4.297305676564661e-3 4.314890655129391e-3
Standard deviation 1.664431616699726e-5 2.7001143234478295e-5 3.845975587712351e-5

Outlying measurements have slight (3.329369797859691e-2%) effect on estimated standard deviation.

nub . sort/1250(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.321387417966262e-3 6.348620416217634e-3 6.3866863059482415e-3
Standard deviation 5.383113883236453e-5 7.631870970815167e-5 9.537241511140924e-5

Outlying measurements have slight (3.993055555555533e-2%) effect on estimated standard deviation.

nub . sort/1500(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 8.615547222310872e-3 8.650457909237949e-3 8.679457762997033e-3
Standard deviation 5.145620885817278e-5 6.765109157449832e-5 9.086452518526152e-5

Outlying measurements have slight (4.75e-2%) effect on estimated standard deviation.

nub . sort/2000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 1.4677183088991004e-2 1.4721149739973457e-2 1.4785967075170619e-2
Standard deviation 6.327954969946401e-5 9.338658822293738e-5 1.2898297229723963e-4

Outlying measurements have slight (6.222222222222214e-2%) effect on estimated standard deviation.

nub . sort/3000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 2.853796948834239e-2 2.867025901526434e-2 2.8825876823639608e-2
Standard deviation 1.4960707757574493e-4 2.1569815755650683e-4 2.996357553037469e-4

Outlying measurements have slight (8.264462809917343e-2%) effect on estimated standard deviation.

nub . sort/4000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 4.375839540370247e-2 4.399164912349904e-2 4.444917283331893e-2
Standard deviation 1.8153020598941032e-4 4.5921466742600877e-4 7.104143875688181e-4

Outlying measurements have slight (9.876543209876543e-2%) effect on estimated standard deviation.

nub . sort/5000(1->8000)

lower bound estimate upper bound
OLS regression xxx xxx xxx
R² goodness-of-fit xxx xxx xxx
Mean execution time 6.223088502719259e-2 6.3445092219398e-2 6.438775305952807e-2
Standard deviation 9.050387112497013e-4 1.3527085969774414e-3 1.7786774115030046e-3

Outlying measurements have moderate (0.12244897959183673%) effect on estimated standard deviation.

understanding this report

In this report, each function benchmarked by criterion is assigned a section of its own. The charts in each section are active; if you hover your mouse over data points and annotations, you will see more details.

Under the charts is a small table. The first two rows are the results of a linear regression run on the measurements displayed in the right-hand chart.

We use a statistical technique called the bootstrap to provide confidence intervals on our estimates. The bootstrap-derived upper and lower bounds on estimates let you see how accurate we believe those estimates to be. (Hover the mouse over the table headers to see the confidence levels.)

A noisy benchmarking environment can cause some or many measurements to fall far from the mean. These outlying measurements can have a significant inflationary effect on the estimate of the standard deviation. We calculate and display an estimate of the extent to which the standard deviation has been inflated by outliers.